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Parametric Curves in 2-D:   

 

Parametric curves are curves given by 𝑥 = 𝑔(𝑡), 𝑦 = ℎ(𝑡) for some independent variable t, usually 
thought of as time.  So all the points on the curve can be given by (𝑥, 𝑦) = (𝑔(𝑡), ℎ(𝑡)).   
Caution:  These curves need not be graphs of functions. 
 
Here are some parametric curves you should be able to recognize: 
 
A line segment from (𝒙𝟏, 𝒚𝟏) to (𝒙𝟐, 𝒚𝟐) 

 𝑥 =  𝑥ଵ + (𝑥ଶ − 𝑥ଵ)𝑡 and  𝑦 =  𝑦ଵ + (𝑦ଶ − 𝑦ଵ)𝑡 ,   0 ≤ 𝑡 ≤ 1 

 
 

A circle centered at (𝒙𝟎, 𝒚𝟎) with a radius a.   
𝒙 = 𝒙𝟎 + 𝒂 𝒄𝒐𝒔( 𝒃𝒕),  𝒚 = 𝒚𝟎 + 𝒂 𝒔𝒊𝒏( 𝒃𝒕) 

The circle is generated clockwise if b > 0 and counterclockwise if b < 0. 

 
An ellipse centered at (𝒙𝟎, 𝒚𝟎): 

𝒙 = 𝒙𝟎 + 𝒂 𝒄𝒐𝒔( 𝒃𝒕),  𝒚 = 𝒚𝟎 + 𝒄 𝒔𝒊𝒏( 𝒃𝒕) 
The circle is generated clockwise if b > 0 and counterclockwise if b < 0. 

 



 
It is sometimes possible to eliminate the parameter by solving one equation for t and plugging it 
into the other equation.  This will give the same curve, but you will lose the information about the 
direction and speed given by the parameter t . 
 
You can turn functions 𝑦 = 𝑓(𝑥) into parametric curves simply by letting 𝑥 = 𝑡, 𝑦 = 𝑓(𝑡). 
 

Parametric Curves in 3-D:   
 

This is essentially exactly the same as 2-D but you get a third equation: 
𝑥 = 𝑓(𝑡), 𝑦 = 𝑔(𝑡), 𝑧 = ℎ(𝑡) 

which gives you a point in 3-space  (𝑥, 𝑦, 𝑧) = (𝑓(𝑡), 𝑔(𝑡), ℎ(𝑡)). 
  
Eliminating the parameter of a 3-D curve will not give you a nice, single equation like in 2-D.  For 
many purposes, parametric descriptions are the most natural way to describe higher dimensional 
curves. 

 
 
 
 
Example:  What does the following parametric equation look like?  Describe its properties. 

𝑥 = 3 + 2 𝑐𝑜𝑠 𝑡 , 𝑦 = 4 + 2 𝑠𝑖𝑛 𝑡 , 𝑧 = 2𝑡,  0 ≤ 𝑡 ≤ 6𝜋 
 

 



Vectors:   
In 3-D, it is often more helpful to talk about vectors instead of points.  A vector is an object with a 
magnitude (length) and a direction.  We draw it as an arrow. 

 

It does not matter where a vector is sitting in space, but if a vector ⟨𝑥, 𝑦, 𝑧⟩ has its tail at the origin, 
then its head will be at the point (𝑥, 𝑦, 𝑧).  (People often interchange these two related but distinct 
concepts.) 

 
Vector Operations Examples: 

 (Table on last page of handout): 

1.  Find the Magnitude of 𝐯 = ⟨3,7,2⟩ 

 

 
2. Simplify the following: 𝐯 = ⟨3,7,2⟩, 5𝐯 =? 

 

 

3. ⟨3,7,2⟩ + 4⟨1,2,3⟩ 

 

 

4. Write 𝐯 = ⟨3,7,2⟩ in terms of i,j,k 

 

 

5. ⟨3,7,2⟩ ⋅ ⟨1,2,3⟩ 



 

 

6. 𝐯 = ⟨3,7,2⟩, 𝐮 = ⟨1,2,3⟩,proj𝐯𝐮 =? 
 
 
 
 
 

7. 𝐯 = ⟨3,7,2⟩, 𝐮 = ⟨1,2,3⟩, 𝐯 × 𝐮 =? 

 

 

 

 

 

 

 

Vector-Valued Functions:   
 
A vector-valued function is essentially a 3-D parameterization where we think of the output as a 
vector instead of a point:  𝐫(𝑡) = ⟨𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)⟩.   
 
As t varies, the tail of the vector stays at the origin and the head of the vector traces out the 3-D 
parametric curve.  

 

 

 

 

 



Equation of a Line 

An equation of the line passing through the point 𝑃଴(𝑥଴, 𝑦଴, 𝑧଴) in the direction of the vector 𝐯 =

⟨𝑎, 𝑏, 𝑐⟩ is 𝐫 = 𝐫𝟎 + 𝑡𝐯, or 

⟨𝑥, 𝑦, 𝑧⟩ = ⟨𝑥଴, 𝑦଴, 𝑧଴⟩ + 𝑡⟨𝑎, 𝑏, 𝑐⟩,   for − ∞ < 𝑡 < ∞. 

Equivalently, the parametric equations of the line are  

𝑥 = 𝑥଴ + 𝑎𝑡,  𝑦 = 𝑦଴ + 𝑏𝑡,  𝑧 = 𝑧଴ + 𝑐𝑡,  for − ∞ < 𝑡 < ∞ 

 

Example 1:  Find the vector-valued function for the line which passes through the point (1,2,3) in 
the direction ⟨4,5,6⟩. 

 

 

 

 

 

 

Example 2: Find the vector-valued function for the line which passes through the points (1,2,3) and 
(4,5,6). 

  



Calculus of Vector-Valued Functions:   
In general, it is very difficult to say anything about vector-valued functions without calculus.  
Thankfully, calculus on vector-valued functions is computationally very straightforward. 

Limits: 
 

DEFINITION: Limit of a Vector-Valued Function 

A vector-valued function 𝐫 approaches the limit 𝐋 as 𝑡 approaches 𝑎, written  lim
௧→௔

 𝐫(𝑡) = 𝐋, provided 

lim
௧→௔

 |𝐫(𝑡) − 𝐋| = 0. 

Computationally, this means you can just take the limit of each component of the vector: 

lim 
௧→௔

𝒓(𝑡) = ർlim 
௧→௔

𝑥(𝑡), lim 
௧→௔

𝑦(𝑡), lim 
௧→௔

𝑧(𝑡)඀ 

Example:  Find the limit of 𝐫(𝑡) = ⟨5𝑡, 𝑒ଷ௧ , 𝑡ଶ + 11⟩ as 𝑡 → 0 

 

 

 

 

 

Continuity: 
 

A vector-valued function 𝒓(𝑡) = ⟨𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)⟩ is continuous at a  if lim
௧→௔

 𝐫(𝑡) = 𝐫(𝑎).  This just 

means that 𝐫(𝑡) is continuous at a if and only if 𝑥(𝑡), 𝑦(𝑡), and 𝑧(𝑡) are all continuous at a. 

 

Example:  Find the values of t where the following vector-valued function is not continuous. 

  𝒓(𝑡) = ർ
ହ

௧ିଷ
, 𝑒௧, tan 𝑡඀              0 ≤ 𝑡 ≤ 𝜋 

  



 

Derivatives: 
We define the derivative of a vector-valued function to be: 

𝐫ᇱ(𝑡) = lim
∆௧ →଴

Δ𝐫

Δ𝑡
= lim

୼௧→଴

𝐫(𝑡 + Δ𝑡) − 𝐫(𝑡)

Δ𝑡
 

 

 

DEFINITION: Derivative and Tangent Vector 

Let 𝐫(𝑡) = 𝑓(𝑡)𝐢 + 𝑔(𝑡)𝐣 + ℎ(𝑡)𝐤, where 𝑓, 𝑔, and ℎ are differentiable functions on (𝑎, 𝑏). Then 𝐫 
has a derivative (or is differentiable) on (𝑎, 𝑏) and 

𝐫ᇱ(𝑡) = 𝑓ᇱ(𝑡)𝐢 + 𝑔ᇱ(𝑡)𝐣 + ℎᇱ(𝑡)𝐤 

Provided 𝐫ᇱ(𝑡) ≠ 𝟎, 𝐫ᇱ(𝑡) is a tangent vector (or velocity vector) at the point corresponding to 𝐫(𝑡). 

Example 1:  Find the derivative of 𝒓(𝑡) = ർ𝑡, 𝑡ଶ − 4,
ଵ

ସ
𝑡ଷ − 8඀. 

 

 

 

Example 2: Find the derivative of 𝑹(𝑡) = ർ𝑡ଶ, 𝑡ସ − 4,
ଵ

ସ
𝑡଺ − 8඀. 

 

 

 

 

 

  



If 𝒓(𝑡) gives the position of a particle in space at time t, then the derivative of 𝒓(𝑡) gives the velocity of 
the particle and magnitude of the derivative gives the speed of the particle.  

 

Derivative Rules 

Let 𝐮 and 𝐯 be differentiable vector-valued functions and let 𝑓 be a differentiable scalar-valued function, 
all at a point 𝑡. Let 𝐜 be a constant vector. The following rules apply. 

1. ௗ

ௗ௧
(𝐜) = 0      Constant Rule 

2. ௗ

ௗ௧
൫𝐮(𝑡) + 𝐯(𝑡)൯ = 𝐮ᇱ(𝑡) + 𝐯ᇱ(𝑡)   Sum Rule 

3. ௗ

ௗ௧
൫𝑓(𝑡)𝐮(𝑡)൯ = 𝑓ᇱ(𝑡)𝐮(𝑡) + 𝑓(𝑡)𝐮ᇱ(𝑡)   Product Rule 

4. ௗ

ௗ௧
(𝐮(𝑓(𝑡))  =  𝐮′(𝑓(𝑡))𝑓′(𝑡)    Chain Rule 

5. ௗ

ௗ௧
൫𝐮(𝑡) ⋅ 𝐯(𝑡)൯ = 𝐮ᇱ(𝑡) ⋅ 𝐯(𝑡) + 𝐮(𝑡) ⋅ 𝐯ᇱ(𝑡)  Dot Product Rule 

6. ௗ

ௗ௧
൫𝐮(𝑡) × 𝐯(𝑡)൯ = 𝐮ᇱ(𝑡) × 𝐯(𝑡) + 𝐮(𝑡) × 𝐯ᇱ(𝑡)  Cross Product Rule 

Find the derivatives of the following vector-valued functions. 

1.  (5𝑡ଷ + ln 𝑡)𝒓(3𝑡 + 11).  Give the answer in terms of the vector 𝐫 and t. 
 
 
 
 
 
 
 
 
 

2. 𝒖(𝑡) ⋅ (𝒗(𝑡) × 𝒘(𝑡)) 
 
 
 
 



 
 
 
 

3. 𝑡⟨4𝑡, ln 𝑡 , 3⟩ + 7⟨5,6,1⟩ 

 

 

 

 

 

 

Integrals: 
An indefinite integral is just an anti-derivative.  Since the derivative for vector-valued functions is 
just the same as taking the derivative of each component, the indefinite integral of a vector-valued 
function is just taking the indefinite integral of each component. 

න 𝒓(𝑡)𝑑𝑡 = ർන 𝑥(𝑡)𝑑𝑡 , න 𝑦(𝑡)𝑑𝑡 , න 𝑧(𝑡)𝑑𝑡඀ 

DEFINITION: Indefinite Integral of a Vector-Valued Function 

Let 𝐫 =  𝑓𝐢 +  𝑔𝐣 +  ℎ𝐤 be a vector function and let 𝐑 =  𝐹𝐢 +  𝐺𝐣 +  𝐻𝐤, where 𝐹, 𝐺, and 𝐻 are 
antiderivatives of 𝑓, 𝑔, and ℎ, respectively. The indefinite integral of 𝐫 is 

න 𝐫(𝒕)𝒅𝒕 = 𝐑(𝒕) + 𝐂 

where 𝐂 is an arbitrary constant vector. 

Example:  Find the indefinite integral of the following vector-valued function. 

න(𝑒௧𝒊 + 12𝒋 + 𝑐𝑜𝑠( 3𝑡)𝒌) 𝑑𝑡 

 

 

 

 

 

 



We can define a definite integral of a vector-valued function similarly. 

DEFINITION: Definite Integral of a Vector-Valued Function 

Let 𝐫(𝑡) = 𝑓(𝑡)𝐢 + 𝑔(𝑡)𝐣 + ℎ(𝑡)𝐤, where 𝑓, 𝑔, and ℎ are integrable on the interval [𝑎, 𝑏]. 

න 𝐫(𝑡)𝑑𝑡
௕

௔

= ቈන 𝑓(𝑡)𝑑𝑡
௕

௔

቉ 𝐢 + ቈන 𝑔(𝑡)𝑑𝑡
௕

௔

቉ 𝐣 + ቈන ℎ(𝑡)𝑑𝑡
௕

௔

቉ 𝐤 

Example:  Find the indefinite integral of the following vector-valued function. 

න ൫(4 + 7𝑡)𝒊 + 𝒋 − √𝑡𝒌൯
ହ

ଷ

𝑑𝑡 

  



  Important Vector Operations:   𝒖 = ⟨𝑢ଵ, 𝑢ଶ, 𝑢ଷ⟩, 𝒗 = ⟨𝑣ଵ, 𝑣ଶ, 𝑣ଷ⟩ 

Term Description Formula Graph 

Magnitude length |𝐯| = ඥ(𝑣ଵ)ଶ + (𝑣ଶ)ଶ + (𝑣ଷ)ଶ 

 

Multiplying 
by a scalar stretching 𝑐𝐯 = ⟨𝑐𝑣ଵ, 𝑐𝑣ଶ, 𝑐𝑣ଷ⟩ 

 

Adding 

Putting end to tail 
 

-or- 
 

Diagonal of the 
parallelogram formed 

by the two vectors 

𝐮 + 𝐯 = ⟨𝑢ଵ + 𝑣ଵ, 𝑢ଶ + 𝑣ଶ, 𝑢ଷ

+ 𝑣ଷ⟩ 
 

 

Basis Vectors 
you can write all the 
others in terms of 3 

main vectors 

𝐢 = ⟨1,0,0⟩ 
𝐣 = ⟨0,1,0⟩ 
𝐤 = ⟨0,0,1⟩ 
𝐯 = 𝑣ଵ𝐢 + 𝑣ଶ𝐣 + 𝑣ଷ𝐤 

 

 

Dot Product 

Multiplying two vectors 
to get a scalar.   

Allows you to find 
angles between vectors. 

 

𝐮 ⋅ 𝐯 = 𝑢ଵ𝑣ଵ + 𝑢ଶ𝑣ଶ + 𝑢ଷ𝑣ଷ 
= |𝐮||𝐯| cos 𝜃 

 

Projection Allows you to project u 
onto v 

proj𝐯𝐮 = |𝐮| cos 𝜃 ൬
𝐯

|𝐯|
൰ 

= ቀ
𝐮 ⋅ 𝐯

𝐯 ⋅ 𝐯
ቁ 𝐯 

 
Cross 

Product 
Multiplying two vectors 

to get a vector. 
The magnitude of the 

cross product is the area 
of the parallelogram. 

𝐮 × 𝐯 = อ
𝐢 𝐣 𝐤

𝑢ଵ 𝑢ଶ 𝑢ଷ

𝑣ଵ 𝑣ଶ 𝑣ଷ

อ 

|𝐮 × 𝐯| = |𝐮||𝐯| sin 𝜃 

 


