MSLC Workshop Series Math 1172 - Workshop 4 Vector-Valued Functions

Parametric Curves in 2-D:

Parametric curves are curves given by $x = g(t)$, $y = h(t)$ for some independent variable t, usually thought of as time. So all the points on the curve can be given by $(x, y) = (g(t), h(t))$. Caution: These curves need not be graphs of functions.

Here are some parametric curves you should be able to recognize:

A line segment from (x_1, y_1) to (x_2, y_2) $x = x_1 + (x_2 - x_1)t$ and $y = y_1 + (y_2 - y_1)t$, $0 \le t \le 1$ (x_1, y_1) (x_2, y_2)

A circle centered at (x_0, y_0) with a radius a.

 $x = x_0 + a \cos(bt), y = y_0 + a \sin(bt)$ The circle is generated clockwise if $b > 0$ and counterclockwise if $b < 0$.

An ellipse centered at (x_0, y_0) :

 $x = x_0 + a \cos(bt), y = y_0 + c \sin(bt)$

The circle is generated clockwise if $b > 0$ and counterclockwise if $b < 0$.

It is sometimes possible to eliminate the parameter by solving one equation for t and plugging it into the other equation. This will give the same curve, but you will lose the information about the direction and speed given by the parameter t .

You can turn functions $y = f(x)$ into parametric curves simply by letting $x = t$, $y = f(t)$.

Parametric Curves in 3-D:

This is essentially exactly the same as 2-D but you get a third equation:

 $x = f(t), y = g(t), z = h(t)$ which gives you a point in 3-space $(x, y, z) = (f(t), g(t), h(t)).$

Eliminating the parameter of a 3-D curve will not give you a nice, single equation like in 2-D. For many purposes, parametric descriptions are the most natural way to describe higher dimensional curves.

Example: What does the following parametric equation look like? Describe its properties. $x = 3 + 2 \cos t$, $y = 4 + 2 \sin t$, $z = 2t$, $0 \le t \le 6\pi$

Vectors:

In 3-D, it is often more helpful to talk about vectors instead of points. A vector is an object with a magnitude (length) and a direction. We draw it as an arrow.

It does not matter where a vector is sitting in space, but if a vector $\langle x, y, z \rangle$ has its tail at the origin, then its head will be at the point (x, y, z) . (People often interchange these two related but distinct concepts.)

Vector Operations Examples:

(Table on last page of handout):

- 1. Find the Magnitude of $\mathbf{v} = \langle 3, 7, 2 \rangle$
- 2. Simplify the following: $\mathbf{v} = \langle 3, 7, 2 \rangle$, $5\mathbf{v} = ?$
- 3. $(3,7,2) + 4(1,2,3)$
- 4. Write $\mathbf{v} = \langle 3, 7, 2 \rangle$ in terms of **i**,j,k
- 5. $(3,7,2) \cdot (1,2,3)$
- 6. $\mathbf{v} = \langle 3, 7, 2 \rangle$, $\mathbf{u} = \langle 1, 2, 3 \rangle$, proj_v $\mathbf{u} = ?$
- 7. $v = (3,7,2), u = (1,2,3), v \times u =?$

Vector-Valued Functions:

A vector-valued function is essentially a 3-D parameterization where we think of the output as a vector instead of a point: $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$.

As t varies, the tail of the vector stays at the origin and the head of the vector traces out the 3-D parametric curve.

Equation of a Line

An **equation of the line** passing through the point $P_0(x_0, y_0, z_0)$ in the direction of the vector $\mathbf{v} =$ $\langle a, b, c \rangle$ is $\mathbf{r} = \mathbf{r_0} + t\mathbf{v}$, or

$$
\langle x,y,z\rangle=\langle x_0,y_0,z_0\rangle+t\langle a,b,c\rangle,\quad\text{ for }-\infty
$$

Equivalently, the parametric equations of the line are

$$
x = x_0 + at, \quad y = y_0 + bt, \quad z = z_0 + ct, \quad \text{for } -\infty < t < \infty
$$

Example 1: Find the vector-valued function for the line which passes through the point (1,2,3) in the direction ⟨4,5,6⟩.

Example 2: Find the vector-valued function for the line which passes through the points (1,2,3) and $(4,5,6)$.

Calculus of Vector-Valued Functions:

In general, it is very difficult to say anything about vector-valued functions without calculus. Thankfully, calculus on vector-valued functions is computationally very straightforward.

Limits:

DEFINITION: Limit of a Vector-Valued Function

A vector-valued function ${\bf r}$ approaches the limit ${\bf L}$ as t approaches a , written $\lim\limits_{t\to a}{\bf r}(t)={\bf L}$, provided $\lim_{t\to a} |\mathbf{r}(t) - \mathbf{L}| = 0.$

Computationally, this means you can just take the limit of each component of the vector:

 $\lim_{t \to a} r(t) = \left\langle \lim_{t \to a} x(t), \lim_{t \to a} y(t), \lim_{t \to a} z(t) \right\rangle$

Example: Find the limit of $\mathbf{r}(t) = \langle 5t, e^{3t}, t^2 + 11 \rangle$ as $t \to 0$

Continuity:

A vector-valued function $r(t) = \langle x(t), y(t), z(t) \rangle$ is continuous at a if $\lim_{t \to a} \mathbf{r}(t) = \mathbf{r}(a)$. This just means that $\mathbf{r}(t)$ is continuous at a if and only if $x(t)$, $y(t)$, and $z(t)$ are all continuous at a.

Example: Find the values of t where the following vector-valued function is not continuous.

$$
r(t) = \left\langle \frac{5}{t-3}, e^t, \tan t \right\rangle \qquad 0 \le t \le \pi
$$

Derivatives:

We define the derivative of a vector-valued function to be:

$$
\mathbf{r}'(t) = \lim_{\Delta t \to 0} \frac{\Delta \mathbf{r}}{\Delta t} = \lim_{\Delta t \to 0} \frac{\mathbf{r}(t + \Delta t) - \mathbf{r}(t)}{\Delta t}
$$

DEFINITION: Derivative and Tangent Vector

Let $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$, where f, g, and h are differentiable functions on (a, b) . Then \mathbf{r} has a **derivative** (or is **differentiable**) on (a, b) and

$$
\mathbf{r}'(t) = f'(t)\mathbf{i} + g'(t)\mathbf{j} + h'(t)\mathbf{k}
$$

Provided $\mathbf{r}'(t) \neq \mathbf{0}$, $\mathbf{r}'(t)$ is a tangent vector (or velocity vector) at the point corresponding to $\mathbf{r}(t)$.

Example 1: Find the derivative of $r(t) = \left\langle t, t^2 - 4, \frac{1}{4}t^3 - 8 \right\rangle$.

Example 2: Find the derivative of $\boldsymbol{R}(t) = \left\langle t^2, t^4 - 4, \frac{1}{4}t^6 - 8 \right\rangle$.

If $r(t)$ gives the position of a particle in space at time t, then the derivative of $r(t)$ gives the velocity of the particle and magnitude of the derivative gives the speed of the particle.

Derivative Rules

Let u and v be differentiable vector-valued functions and let f be a differentiable scalar-valued function, all at a point t . Let c be a constant vector. The following rules apply.

Find the derivatives of the following vector-valued functions.

1. $(5t^3 + \ln t)r(3t + 11)$. Give the answer in terms of the vector **r** and *t*.

2. $\mathbf{u}(t) \cdot (\mathbf{v}(t) \times \mathbf{w}(t))$

3. $t\langle 4t, \ln t, 3 \rangle + 7\langle 5, 6, 1 \rangle$

Integrals:

An indefinite integral is just an anti-derivative. Since the derivative for vector-valued functions is just the same as taking the derivative of each component, the indefinite integral of a vector-valued function is just taking the indefinite integral of each component.

$$
\int r(t)dt = \left\langle \int x(t)dt, \int y(t)dt, \int z(t)dt \right\rangle
$$

DEFINITION: Indefinite Integral of a Vector-Valued Function

Let $\mathbf{r} = f\mathbf{i} + g\mathbf{j} + h\mathbf{k}$ be a vector function and let $\mathbf{R} = F\mathbf{i} + G\mathbf{j} + H\mathbf{k}$, where F, G, and H are antiderivatives of f , g , and h , respectively. The indefinite integral of r is

$$
\int \mathbf{r}(t)dt = \mathbf{R}(t) + \mathbf{C}
$$

where C is an arbitrary constant vector.

Example: Find the indefinite integral of the following vector-valued function.

$$
\int (e^t \mathbf{i} + 12 \mathbf{j} + \cos(3t) \mathbf{k}) dt
$$

DEFINITION: Definite Integral of a Vector-Valued Function

Let $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$, where f, g, and h are integrable on the interval $[a, b]$.

$$
\int_{a}^{b} \mathbf{r}(t)dt = \left[\int_{a}^{b} f(t)dt\right] \mathbf{i} + \left[\int_{a}^{b} g(t)dt\right] \mathbf{j} + \left[\int_{a}^{b} h(t)dt\right] \mathbf{k}
$$

Example: Find the indefinite integral of the following vector-valued function.

$$
\int_3^5 \bigl((4+7t)\boldsymbol{i}+\boldsymbol{j}-\sqrt{t}\boldsymbol{k}\bigr)\,dt
$$

Important Vector Operations: $\mathbf{u} = \langle u_1, u_2, u_3 \rangle, \mathbf{v} = \langle v_1, v_2, v_3 \rangle$

