MSLC Workshop Series Math 1172 Planes and Surfaces

I. Planes

A plane is like an infinite piece of paper in 3-space.

A plane can be determined if you know a **point** on the plane and a **normal vector** to the plane.

Compare this to finding the equation of a line in 2-space. You need a point to tell you the "height" and a slope or normal vector to tell you the "slant".

© Briggs Calculus Textbook, Pearson Publishing

General Equation of a Plane in R^3

The plane passing through the point $P_0=(x_0,y_0,z_0)$ with a normal vector $\mathbf{n}=\langle a,b,c\rangle$ is described by the equation $a(x-x_0)+b(y-y_0)+c(z-z_0)=0$ or ax+by+cz=d, where $d=ax_0+by_0+cz_0$.

Example 1: Find the equation of the plane that contains the point (7,8,9) and is perpendicular to the vector <1,2,3>.

Example 2: Find the plane that contains the points (3,2,1), (4,5,6), and (7,8,9).

II. Intersection of Planes:

© Briggs Calculus Textbook, Pearson Publishing

When two planes distinct intersect, they intersect in a line.

© Briggs Calculus Textbook, Pearson Publishing

Sometimes two planes are parallel and they do not intersect.

Example 1: Determine if the following planes intersect, and if they intersect, determine the line of intersection.

$$3x + 2y - 5z = 9$$
, $2x - 3y + z = 2$

Example 2: Determine if the following planes intersect, and if they intersect, determine the line of intersection.

$$3x + 2y - 5z = 9$$
, $6x + 4y - 10z = 2$

III. Surfaces

© Briggs Calculus Textbook, Pearson Publishing

Surfaces are 2-dimensional objects. Anything that looks "locally" like a plane is called a surface. This means, if you are a tiny bug living on this surface, you think it's a plane. For example, the surface of the earth is a surface. We think it looks flat, but we know it's really the surface of a sphere.

Some surfaces are graphs of equations in two variables which look like z = f(x, y). We call these **functions of two variables** if they pass the vertical (i.e. parallel to z) line test.

Surfaces can be very difficult to draw or even visualize. Some are very easy, though.

Example 1: Sketch z = 6. This is a plane.

Example 2: Sketch $z=y^2\,$. This is a cylinder.

IV: Quadric Surfaces

There are some surfaces that are used so often that you really just need to memorize them.

Example: Match the functions with their graphs and names. Choose one item per column.

Function	Picture	Name
$z^2 = 3x^2 + 2y^2$	-4 -2 0 z -2 4 -4	Hyperboloid of two sheets
$x^2 - y^2 - z^2 = 1$		Cone
$x^2 + y^2 + 2z^2 = 4$	5 0 0 2 0 2 -4 -2 0 2 4	Ellipsoid

V: Traces

To find out more about quadric surfaces or other unknown surfaces, we use various techniques to try to look at portions of these surfaces in 2-D. One such technique is called **traces**. For this technique, you intersect the surface with a plane, usually a x = a, y = b, or z = c, and look at the resulting 2-D curve.

© Briggs Calculus Textbook, Pearson Publishing

Example 1a: Find the x=0 trace for $y=\frac{z^2}{4}+\frac{x^2}{4}$. Sketch this curve, and compare this to your sketch on the previous page.

Example 1b: Find the trace when y = 4 for $y = \frac{z^2}{4} + \frac{x^2}{4}$. Sketch this curve, and compare this to your sketch on the previous page.

Example 1c: Sketch
$$y = \frac{z^2}{4} + \frac{x^2}{4}$$

VI: Level Curves

Another technique for determining how a surface looks or behaves is by using level curves. This is used is used when the surface is a function of two variables, z = f(x, y).

Level curves are essentially a series of traces made with planes parallel to the xy-plane (z=c). These traces are all graphed on the same set of xy-axis and are used to visualize how the function changes as we change the height, z. A common example of level curves in use are elevation maps.

© Briggs Calculus Textbook, Pearson Publishing

Example 1: Draw the level curves for $f(x,y) = y - x^2 - 1$ for f(x,y) = -2, 0, and 2.

Example 2: Draw the level curves for $f(x, y) = e^{-x^2 - y^2}$ for f(x, y) = 0.1, 0.3, and 0.7.

