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Sigma Notation: 

Notation and Interpretation of  1 2 3 14
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  (capital Greek sigma, corresponds to the letter S) indicates that we are to sum numbers of the form 

indicated by the general term 

 ka  is the general term, which determines what is being summed, and can be defined however we want 

but is usually a formula containing the index:  ka f k  

 k is called the index; we may use any letter for the index, typically we use i, j, k, l, m, and n as indices 

 The index runs through the positive integers, starting with the number below the  (in this case 1) and 

ending with the integer above the  (in this case n) 

 The sum on the right-hand side is the expanded form.  (The   contains all the terms I was too lazy to write.) 

 The letter below the sigma is the variable with respect to the sum.  All other letters are constants with 
respect to the sum. 
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Special Sum Formulas   
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Properties of Sigma Notation   is an operator that represents summation, and its properties are similar to the 

properties of addition (note what properties are not mentioned here). 

 Multiplication by a common constant (also called a scalar multiple)     k kca c a     

 Addition or Subtraction (this is also called the linearity property)  k k k ka b a b       

Example:  
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Riemann Sums:    height of th rectangle width of th rectangle
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Definition of a Riemann Sum: 

Consider a function  f x  defined on a closed interval  ,a b , partitioned into n  subintervals of equal 

width by means of grid points 0 1 2 1n na x x x x x b        .  On each subinterval  1,k kx x , 

pick a sample point *
kx .  Then the Riemann sum for f  corresponding to this partition is given by:  
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 WIDTH:  x  
Since we partition the interval into evenly spaced partitions, we can calculate the width: 
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 , where n is the number of partitions. 

 
 

 HEIGHT:  
*( )kf x  

Also, we usually don’t pick *
kx  arbitrarily.  We use a rule to pick *

kx .  The most common rules 

to use are the Right Endpoint Rule, the Left Endpoint Rule, and the Midpoint Rule.  
 

The most common rules to use are: 

Right Endpoint Rule   *
kx   

 
 
 
 
 
 
 
 

 
 
 
 
 



Left Endpoint Rule *
kx   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Midpoint Rule  *
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 If we partition the interval into more and more rectangles with smaller and smaller widths, 

we get closer to the (signed) area trapped between the curve  y f x  and the x -axis.   

 
This is where Sigma Notation comes in because it becomes time consuming to add up all 
the terms when there are many, many rectangles. 

 



Calculating A Riemann Sum 
 
Using the Right Endpoint Rule, the Riemann sum becomes: 
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Using the Left Endpoint Rule, the Riemann sum becomes: 

( ) ( )

1 1

( ( 1) )( ) ( ) ( ( 1) )
n n

b a b a
n n

k k

f a k x x f a k 

 

         

Using the Midpoint Rule, the Riemann sum becomes: 
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Example:  
Estimate the area under 𝑓ሺ𝑥ሻ ൌ 𝑥ଶ ൅ 2 on the interval [-2, 3] using right Riemann Sums and 5 
rectangles. No need to use sigma notation here. 
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Estimate the area under 𝑓ሺ𝑥ሻ ൌ 𝑥ଶ ൅ 2 on the interval [-2, 3] using left Riemann Sums and 5 
rectangles. 
 

 
 
 
 
 
 
 
 
 
 
Estimate the area under 𝑓ሺ𝑥ሻ ൌ 𝑥ଶ ൅ 2 on the interval ሾെ2, 3ሿ using midpoint Riemann Sums 
and 5 rectangles.  
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Example: Estimate the area under 𝑓ሺ𝑥ሻ ൌ 𝑥ଷ on the interval [0, 2] using right Riemann sums 
and 10 rectangles. Try using sigma notation! 
 
 
First calculate the width: x   
 
 
Then the x-value for the right endpoint of the kth rectangle is 𝑥௞

∗ ൌ 
 
 
 
Thus the height of the kth rectangle is 𝑓ሺ𝑥௞

∗ሻ ൌ 
  
 
 
 
So the Riemann sum is  

 
 
  
 

Now evaluate this sum using your knowledge of sigma notation! 
  



Example: Estimate the area under 𝑓ሺ𝑥ሻ ൌ 𝑥ଷ on the interval [0, 2] using right Riemann sums 
and 50 rectangles. Try to use your work from the previous problem. What changes? 
 
 
First calculate the width: Δ𝑥 ൌ 
 
 
Then the x-value for the right endpoint of the kth rectangle is 𝑥௞

∗ ൌ 
 
 
 
Thus the height of the kth rectangle is 𝑓ሺ𝑥௞

∗ሻ ൌ 
  
 
 
 
So the Riemann sum is  

 
 
  
 

Now evaluate this sum using your knowledge of sigma notation! 
 
 
 
 
 
 
 
 
 
 
 
 
  



Being More Accurate: 
 
What if we want to get a better approximation than any of the above give us? More rectangles 
will give us less extra or unused area between the curve and the x -axis. Let’s again do a right 
sum for 𝑓ሺ𝑥ሻ ൌ 𝑥ଷ on the interval ሾ0,2ሿ: 

෍𝑓ሺ𝑥୩
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using 𝑛 equal subintervals. 
 
First calculate the width: x   
 
 
Then the x-value for the right endpoint of the kth rectangle is 𝑥௞

∗ ൌ 
 
 
 
 
Thus the height of the kth rectangle is 𝑓ሺ𝑥௞

∗ሻ ൌ 
 
 
 
So the Riemann sum is  

 
 
  
 

Now evaluate this sum using your knowledge of sigma notation! 
 
 
 
 
 
 

If you have time, take the limit as 𝑛 goes to infinity! This is the definite integral ׬ 𝑥ଷ𝑑𝑥
ଶ
଴ . 

 
 
 
 
 
 
 
 
 
 
Note that the definite integral can often be calculated as an area using geometry or with the 
fundamental theorem of calculus! Don’t do more work than you have to! 


