MSLC Workshop Series Math 1151

Limits and Continuity

Warm-up: Let $f(x) = \frac{x^2 - 6x + 8}{x - 2}$ and let g(x) = x - 4. Are f and g equivalent functions? Why or why not?

Draw the graphs of y = f(x) and y = g(x).

Limits:

There is a technical definition, but for us, the intuitive definition will do just fine. Here it is:

The limit L is the value the function "gets close to" if we make the x values "get close to" (but not equal to)

Quick Check: Find the value of the $\lim_{x\to 3} f(x)$ from the graph.

Continuity:

Def A function f(x) is continuous at x = a if and only if $\lim_{x \to a} f(x) = f(a)$.

This definition actually states three things:

- 1.
- 2.
- 3.

Let y = f(x) be given by the graph below. Use the graph to find the following.

1. a.
$$f(1) =$$

b.
$$\lim_{x \to 1} f(x) =$$

c. Is
$$f$$
 continuous at $x = 1$?

2. a.
$$\lim_{x \to -2^{-}} f(x) =$$

b.
$$\lim_{x \to -2^+} f(x) =$$

$$c. \lim_{x \to -2} f(x) =$$

d. Is f continuous at x = -2?

3. a.
$$\lim_{x \to -5^{-}} f(x) =$$

b.
$$\lim_{x \to -5^+} f(x) =$$

c.
$$\lim_{x \to -5} f(x) =$$

d.
$$f(-5) =$$

e. Is
$$f$$
 continuous at $x = -5$?

4. a.
$$\lim_{x \to 3^{-}} f(x) =$$

$$b. \lim_{x \to 3^+} f(x) =$$

c.
$$\lim_{x \to 3} f(x) =$$

d.
$$f(3) =$$

e. Is f continuous at x = 3?

5. a.
$$\lim_{x \to 6^-} f(x) =$$

$$b. \lim_{x \to 6^+} f(x) =$$

$$c. \lim_{x \to 6} f(x) =$$

d.
$$f(6) =$$

e. Is f continuous at x = 6?

Hints about finding Limits:

- Plugging in nearby numbers will get you no credit unless the directions specifically say to do so.
- For any function which is CONTINUOUS, you can find the limit just by plugging in the number as long as the answer is defined.

In particular w wherever they		wing functions and	all their combinat	ions are continu
Ways you can	combine continu	uous functions to ge	t another continu	ous function:
What do you do if the	function is unde	 fined?		
zero		nonzero numbe	<u>er</u>	zero
nonzero number		zero		zero
	number		infinity	
	infinity		infinity	

Limit Examples:

1.
$$\lim_{x \to 4} \frac{3 - 2x}{(x - 4)(x + 2)}$$

$$2. \lim_{x \to 4} \frac{x^2 - 4x}{x^2 - 3x - 4}$$

$$3. \quad \lim_{h \to 0} \frac{\sqrt{1+h} - 1}{h}$$

4.
$$f(x) = \begin{cases} 4 - x^2 & x \le 2 \\ x - 1 & x > 2 \end{cases}$$

- a. Find $\lim_{x\to 2^-} f(x)$ and $\lim_{x\to 2^+} f(x)$. b. Does $\lim_{x\to 2} f(x)$ exist?
- c. Sketch a graph of f(x).

5. Challenge Problem!
$$\lim_{x \to -\infty} \frac{3x^3}{\sqrt{9x^6 + x}}$$

Continuity Examples: Determine if the following functions are continuous at the given x-value.

1.
$$f(x) = \begin{cases} 3x^2 + 7 & x < 2 \\ \sin(x) & x > 2 \end{cases}$$
, x=2

2.
$$g(x) = \begin{cases} \frac{x^2 - 2x - 8}{x - 4} & x \neq 4 \\ 7 & x = 4 \end{cases}$$
, x=4

Comparison Chart of Limits vs. Continuity

	Limits	Continuity	
Conceptually	Where is the function headed (y-value) as you get near a certain x-value?	Can you draw it without picking up your pencil?	
Graphically	No jumps or infinite squiggles, ignore the point itself	No holes, breaks, or infinite squiggles	
Algebraically	Limits from both sides have to agree	Limits from both sides have to agree	
		2) The y-value of the point has to agree with the limit	
Math Notation * And fine print	1) $\lim_{x \to a^{+}} f(x) = \lim_{x \to a^{-}} f(x)$ *f(x) is defined on an interval on both sides of a	1) $\lim_{x \to a^{+}} f(x) = \lim_{x \to a^{-}} f(x)$ 2) $f(a) \text{ is defined and}$ $f(a) = \lim_{x \to a} f(x)$	