Definition of the Derivative:

The derivative of a function f is another function f^{\prime} whose value at any number a is:
$f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$, provided that this limit exists.

Other Forms of the Definition of the Derivative:

$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$	$f^{\prime}(x)=\lim _{t \rightarrow x} \frac{f(t)-f(x)}{t-x}$	$f^{\prime}(a)=\lim _{t \rightarrow a} \frac{f(t)-f(a)}{t-a}$

Table of Key Derivatives:

Exponent and Log functions	$\frac{d}{d x} e^{x}=e^{x}$	$\frac{d}{d x} a^{x}=a^{x} \ln a$	$\frac{d}{d x} \ln x=\frac{1}{x}$
Trigonometric functions	$\frac{d}{d x} \sin x=\cos x$	$\frac{d}{d x} \cos x=-\sin x$	$\frac{d}{d x} \tan x=\sec ^{2} x$
$\frac{d}{d x} \csc x=-\csc x \cot x$	$\frac{d}{d x} \sec x=\sec x \tan x$	$\frac{d}{d x} \cot x=-\csc ^{2} x$	
Inverse Trig functions	$\frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{1-x^{2}}}$	$\frac{d}{d x} \cos ^{-1} x=-\frac{1}{\sqrt{1-x^{2}}}$	$\frac{d}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}}$

Derivative Rules

- $\frac{d}{d x} c=0$
- $\frac{d}{d x}(c \cdot f)=c \cdot f^{\prime}$
- $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
derivative of ANY constant (anything without an x)
- $(f \pm g)^{\prime}=f^{\prime} \pm g^{\prime}$
derivative of a constant times a function
the Power Rule
- $(f \cdot g)^{\prime}=f^{\prime} \cdot g+f \cdot g^{\prime}$
sum or difference of functions
- $\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} \cdot g-f \cdot g^{\prime}}{g^{2}}$ the Product Rule
- $\quad[f(g(x))]^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)$ the Chain Rule

Implicit Differentiation

If we want to find $\frac{d y}{d x}$, we think of y as implicitly defined as a function of \boldsymbol{x}.

- When we differentiate x, we get 1 .
- When we differentiate y, we get $\frac{d y}{d x}$ or y^{\prime} (either is fine).
- Then we solve for $\frac{d y}{d x}$.

Logarithmic Differentiation

Used when the function is complicated or for functions with an x in base and in the exponent.
Option 1: Take the log of both sides, simplify with log properties, differentiate (implicit chain rule on y will always happen on the left side), then solve for y^{\prime}.
Ex. $\quad y=x^{x} \Rightarrow \ln y=\ln x^{x}=x \ln x \Rightarrow \frac{d}{d x}(\ln y)=\frac{d}{d x}(x \ln x) \Rightarrow$
$\frac{1}{y} y^{\prime}=1 * \ln x+x * \frac{1}{x}=\ln x+1 \quad \Rightarrow \quad y^{\prime}=y(\ln x+1)=x^{x}(\ln x+1)$

Option 2: Take $\mathrm{e}^{\wedge} \ln$ (your equation), simplify with log properties, differentiate (not implicit).
Ex. $\quad y=x^{x} \Rightarrow y=e^{\ln x^{x}}=e^{x \ln x} \Rightarrow \frac{d y}{d x}=\frac{d}{d x}\left(e^{x \ln x}\right) \Rightarrow$
$y^{\prime}=e^{x \ln x}\left(1 * \ln x+x * \frac{1}{x}\right)=e^{x \ln x}(\ln x+1)$

